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From the Physical Network to the n
Admittance Matrix - Infroduction

An power system is essentially composed by:

o buses (or nodes), that can be distinguished in generator
buses (corresponding to the generator terminals), reactive
compensation buses (corresponding to the tferminals of
the synchronous compensators and the static
compensators), interconnection buses (where more lines
converge in order to form the «umeshedy» configuration)
and load buses (which feed the equivalent loads seen
from the High Voltage network) (see Note #1);
capacitor banks in shunt and in series connection;
transformers;

reactances, in shunt and in series connection;

lines overhead and cables that link the various buses;
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From the Physical Network to the n
Admittance Matrix - Infroduction

NOTE #1: on the number of the network buses

A simplification of the study can be obtained by limifing
the connected network at the high voltage and
considering the lower voltage parts as equivalent
concentrated loads.



From the Physical Network to the n
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Hypothesis:

> network in permanent state of equilibrium,

> network topology and parameters are constant,

» constant load demands,

> electrical components are linear,

> the Network is symmetrical and balanced

In view of the above hypothesis the phase-to-ground
voltages and currents can be derived at every point of
the network using the direct sequence. Their frequency
correspond to the electrical speed of the synchronous
machines and the active and reactive powers appear
constant at every given point of the network.

Therefore, the three-phase neitwork can be studied
using an equivalent one-phase network.




From the Physical Network to the
Admittance Matrix - Infroduction

We will deal with this study using the relative values - the
represented voltages in such an one-phase equivalent
circuit are either the phase-to-ground or the phase-to-
phase ones, therefore it is useful to apply the second
ones given that the power flows in the circuit are the
three-phase powers in per unit.

Now, the load-flow problem consists in the determination
of the active and reactive power values in the various
elements of the passive network (lines and transformers)
under permanent system conditions. - Nofte #2 -
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NOTE #2: on the load-flow calculation

If the network structure is known together with the
admittances that compose it, by knowing the voltages in
module and phase in all the network nodes, it is possible
to calculate all the other electrical parameters of
Interest, namely the power flows and currents injected or
extracted from the nodes as well as the network losses.

For this reason, the ‘problem of the load-flow’ is
practically equivalent to the determination under
permanent conditions of the phasors representing the
voltages in all the network nodes (state variables).
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Why are the calculations of Load Flow performed?

o To determine daily, or sub-hour, network operating conditions that satisfy the load
demand with respect to both (i) network security and (i) operating costs. In
particular, (i) the currents in the network branches should be lower than the
maximum acceptable values in compliance with specific limits and (i) the
transmission losses and/or the power plants operating cost should be the
minimum possible.

o To set the optimal technical and economical power system development
(planning problem) in order to cope with progressively increasing loads over the
years. The planning problem refers to both power plants and lines. It is divided as
long or medium-term planning (5-15 years) or short-term planning(1-3 years);

In the on-line (or quasi-real-time) monitoring, the load-flow calculation is used in
order to be able to deploy the most appropriate control actions, not necessarily
automatic, taking into account that measurements are acquired from various
network points, typically every 2-10 seconds.
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From the Physical Network 1o the
Admittance Matrix — The Nodal Analysis

We consider a network linear, passive and reciprocal (we assume, for
simplicity reasons, that tfransformers with a complex transformation ratio
are not present).

A network like this is characterized by n+1 buses, with g generator
buses and v load buses. where the bus n+1 is the ‘neutral’ (refurn
conductorin Fig. 1). (*)

The network is characterized by m branches each one having a
unigue series admittance. In general, the value of such an admittance
is considered, for simplicity, independent from the assumed voltage
and current values (hamely we neglect the inductive couplings
between neighboring lines, the parameter variations - for example
resistances — with the temperature and, therefore, with the ambient
temperature and the current, etfc. ).

(*) This doesn’t mean that the number of the network buses n+1 is equal to g+u+1, since,
as it will be shortly clarified, it will be necessary to distinguish among the n+1 network
buses an additional bus, called the ‘slack bus’.



On the Two-Ports Network Equivalents n

Remember that the network is supposed to be composed by

I
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On the Two-Ports Network Equivalents
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Fig. 1. Representation of the generic node i and its connections.
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Admittance Matrix — The Nodal Analysis

The problem that we would solve now (nodal analysis) is to find which are
the relations between the node voltages and injected currents,
considering the first as independent variables and the second as
dependent variables.

For a generic network node i-th, the node voltage is indicated with E; and
with I. the node-injected current (this last is the current delivered by a
generator or absorbed by a load connected to the node). By
convention, a current that is injected by a generator (into network) is
considered with positive sign and a current absorbed by a load is
considered with negative sign. If a node has only the interconnection
function (i.e. it does not have generators or loads connected to it), the
corresponding injected current is, obviously, null. If more generators and
loads are connected to a node, the node current is the algebraic sum of
the corresponding complex currents. We indicate with L; the current of
the branch that connects the nodes i and j. The compfex admittance
between node i and node j is indicated with y;, whereas, with y,y we
indicate the sum of the admittances existing between the node i and the
neutral.
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Admittance Matrix — The Nodal Analysis

With reference to the network represented in Fig. 1, the currents
exiting from the node are:

I,=y,E
) Til :)_;il(Ei _ _1)
[ =y,(E-E)

r

Applying the first Kirchhoff law, we obtain:
I

VE+y (E—E)+..+7y
y +y, +.+Vy)E -V E —.—-VE =

1
A~

=, +3,+..+,)E -3 V,E,
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By settin = _ _
yEee V=3, 4, .ty =2,
Yil — _yl
Yin:_y
we obtain
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Admittance Matrix — The Nodal Analysis

A similar equation can be written for all other nodes >

for the whole network FhE A A E AR,
we can deri\/e R RS o
the following system: s I =YE+.+Y E +..+Y E
I =Y E+..+Y E +..+Y FE
in matrix I, Y, o Y, » E,
formulation
I, |=| ¥, .. 7, .. 7, || E |=[T]=[V][E]
Tn Ynl ee Ynh Ynn En

[7] Is the so-called network admittance matrix



From the Physical Network 1o the
Admittance Matrix — The Nodal Analysis

Properties of the nodal admittance matrix elements.

» a generic element Y out of the main diagonal, called trans-
admittance, is equal ’ro the opposite of the admittance y of the
branch that connects the nodes i andy:

Yij — —)_}ij — Tl E=l

» a generic element Y of the main diagonal, called self-
admittance, is equadl to the sum of all the admittances of the
branches that are connected to node i including the ones with

the neuftral:

E=l

E=0 Vi

io ij

where the summation is extended to all of the nodes connected to
node i.



From the Physical Network 1o the
Admittance Matrix — The Nodal Analysis

Matrix [17] is sparse. Furthermore, it is diagonal-dominant because
each of its diagonal elements, in absolute value, is not lower than
the sum of the other elements in the same row.

Matrix [7] is also symmetric if all the double bipolars that compose
the network are reciprocal.



Example

] 0km g 9 Lines rated voltage: 220kV
100 km 100 km r=0,0717 Q/km
x=0,424 Q/km
b =2,64 uS/km
3
g=0

We assume as power base 100 MW
and base voltage 220 kV

Y11=y12+y13+y10 Y12=y12 Y13=y13
rpu=r*100/220"2 5,63—-333,2 -3,75+j22,2 -1,88 +j 11,1
xpu=x*100/220"2
bpu=b*22072/100
Y22=y12+y23+y20 Y23=-y23
y12=1/((rpu+i*xpu)*50) 5,63—j33,2 -1,88 +j 11,1
y13=1/((rpu+i*xpu)*100)
y23=1/((rpu+i*xpu)*100)
y10=1/2*(bpu*50+bpu*100) V33—
—y13+y23+y30
y20=1/2*(bpu*50+bpu* 100) 3,75 _j 22.1

y30=1/2*(bpu*100-+bpu*100)

22
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The Equations - Infroduction m

I:T] _ I:Y:II:E In a network with n nodes, the n complex voltages and the
o n complex nhode currents are linked by n equations with

complex variables and coefficients represenfing the internal network
constraints.

The 2n complex voltages and currents are equivalent to 4n real variables. On
the other hand, we have 2n linear equations with real variables and
coefficients, which are obtained by separating the real and imaginary parts (or
the modules and the arguments).

Therefore, from the 4n real variables, 2n can be fixed arbitrarily and the
remaining 2r are calculated by solving the system of equations of the network.

When the system is solved, and therefore all voltages and currents are known,
we can calculate (see Note #2):.

- P and Qinserted or extracted from the nodes
- branches powers/currents

- network losses (both active and reactive, corresponding to the balance
between powers inserted and extracted from the nodes).

If the network operation conditions could be represented imposing as external
constraints only voltage and current amplitudes and phases, the power flows
can be calculated by solving a simple system of linear equations.



The Equations - Infroduction m

In practice, the operating conditions imposed on the networks
(external constraints) are expressed by fixing other parameters. This
implies, as will be explained shortly, that the system of equations to be
solved becomes non-linear. In particular:

In the load buses P and O demands are normally fixed (P;* and 0,%).

In practice, it is not appropriate to represent the various user devices
with constant admittances (i.e., asynchronous motors absorbb active
power almost independently of the voltage, with variations in the
range of +10%; gas-discharge lamps and incandescent lamps, even if
they absorb power that varies with the voltage, do not follow the
quadratic law).

(04
V p
The dependence on the voltage is expressed by P=F, [7)
the general relations shown at the right, where 0
the value of the exponential coefficients depend ( v j%

fo the nafure of the load and, in some cases, it can Q= Q,

also be set = 0. Vi



The Equations - Infroduction m

For the generator buses, it is convenient o fix the P that is injected from them
to the grid (P;*) and the amplitude of voltage E (E;*).

We choose the value equal to the P that each power plant is called to
provide in accordance with the plan of the global network load distribution
among the production installations.

Fixing the E, rather than the Q, is convenient for the following reasons:

>

1.

2.

fixing the voltage (typically at a value between E, and 1.1E, according
to the location of the power plants and the distance with respect to
the loads), means that we set the voltage in the network key points
(often scattered throughout the network). So the solution of the
equations provides a solution acceptable for the network operation. It
is also facilitated the convergence of the iterative procedure for the
solution of the equations (which is not discussed here).

The QO of the generaftors can vary between the Max-limit (i.e.,
generators over excitation) and the Min-limit (i.e., generators under
excitation) by simply by varying the excitation current. Therefore, it is
convenient to accept to operate each power plant with the Q that is
provided by the calculation and which allows to obtain the
predetermined voltages.



The Equations - Infroduction

We have justified that both for loads and generators, it is convenient to fix the
P.

It should be noted, however, that it is not possible to assign arbitrary valuesof P
at all nodes because this would be equal to arbitrarily setting the network
losses, which is clearly absurd. In fact, the losses are not known inifially, but are
calculated together with the power flows, after having solved the equations.

It is therefore allowable to arbitrarily set no more than (n-1) active powers.

Consequently, for one of the nodes, that can be chosen to coincide in the
numbering with the n-th node, the amplitude and the phase of the voltage are
fixed. This node is called slack bus, as the active power, for this node, is equal
to the balance between the active powers of generators/loads and the
power losses.

As slack bus we can choose a generator where a significant power is installed.
In this node the phase of the voltage is fixed to zero; this is equivalent to
measuring the phases of the other (n-1) node voltages using as a reference the
slack bus voltage phasor.




The Equations - Infroduction m

Summary of the parameters that are imposed and the ones that
need to be determined for the various types of buses

Type of bus Imposed parameters Parameters to be
(in total 2n) determined (in total 2xn)

Generator buses Pg Eg Og arg (Eg)

Load buses Pe Oc Ec arg (E.)
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The Equations - Cartesian Coordinates
Formulation
We will use the following notations:

E =F + ]E voltage of the i-th node;

l l

Eh — Eh 4 ]Eh voltage of the A-th node;

Y =G, +jB, ih element of the admittance matrix [Y] ;

The complex power injected, or absorbed, from the i-th node can be
written as:

gz':Pi_l_jQi:EiL'

replacing the expression that gives the complex current inserted or
extracted from the node i we get:

n

S,=EXY,E,=(E+JE)Y(G, - jB,)(E,+ JE,)

h=1



The Equations - Cartesian Coordinates
Formulation

Then, the injected active and reactive powers of the i-th node will be:

-
n

B — Ei,Z(GihE; o BihEP:,) T Ei”i(Bith: + GzhEi:,)
Qi — _Ei, Zn:(BlhE; T GlhE;,) T El”zn“(GlhE; o Bzth:,)

h=1

The module (the square) of the voltage at the i-th node will also be:

E*=E’+E"



The Equations - Cartesian Coordinates
Formulation

The entire system of equations in cartesian coordinates assumes the
following form:

0=FE i=n for the unique slack bus

E"=E"+E" i=12,...¢ and i=n, for the g
generator buses + the slack bus

n n

P =F E—-BEY+ES(BE +G E\ FL2-.gtu for the g generator
i lhzz}(Glh h ih h) i hzz}( th™— h Glh h) buses + u |OOd buses

n

Q = —Ez(BhEh +G,E )+E Y(G,E,— B,E,) i=g+1...., g+u for the load buses

The number of equations is: 1+(g+1)+(g+u)+u=2(g+u+1)=2n.
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The Equations — Polar Coordinates
Formulation

By indicating with ¢;, 6; respectively the arguments of the current and voltage
of node i and with y;, the argument of the admittance we can write Yih

El_ — Eiejef voltage at the i-th node;

Ti — Iiej@ current at the i-th node;

\V Y in —
Yih — Y,-hej element ih of the admittance matrix [Y] :

The complex power at the i-th node can be written as:
gi :Pi+jQi :Eili

Using again the network admittance matrix to express the injected node
current, we obtain:

S, = Eiizih L,= iEiXih L, = iEl.EhKhej(e"“’h‘”)



The Equations — Polar Coordinates
Formulation

Then, the active and reactive powers at the i-th node will be:

r

])i — iEthYzh COS (91 o Qh o Yih)
) "=l (LF.18)

Qi = iEthYzh Sin (91 - Hh o yzh)

\



The Equations — Polar Coordinates

Formulation

The system of equations for the solution of the load flow problem in
polar coordinates assumes therefore the following form:

0=0
E‘i>l< =Ei

Pi* — EziEhYzh COS(Gih _ ym)

Qi* = EziEhYzh Sin(ez’h o Yih)

i=n for the unique slack bus
=1,2,....¢ and i=n, for the g
generator buses + the slack bus
i=1,2,...gtu, for the g generator

buses + the u load buses

i=g+1,..., gtu, for the load buses

The number of equations is: 1+(g+1)+(g+u)+u=2n.



The Equations — Polar Coordinates
Formulation

In this case, the first g+2 equations (generator buses and slack bus)
are the positions, which can be replaced directly in the other
equations of the system, so the number of equations needed in the
formulation in polar coordinates (g+2u) is lower than the one in
Cartesian coordinates. This is due to the fact that the modules of the
voltages at the generator and the phase of the voltage of the slack
bus, are already acquired as imposed parameters.

This does not necessarily imply a reduction of the computation time.
In fact, using polar coordinates, it is necessary to calculate
trigonometric functions sin and cos.



The Equations — Polar Coordinates
Formulation

Formulation in polar coordinates for the voltage and cartesian for the
admittances:

0=0 i=n for the unique slack bus

E =F i=12,...g and i=n, for the g
l l generator buses + the slack bus

n

- . i=1,2,...gtu, for the g generator
£ = EZ.Z;E,Z (Gih cosd, + B, sin 9”1) buses + the u load buses

n

Q =EYE (G,-h sin@, — B, cos Qih) i=g+1,..., g+u, for the load buses

h=1
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The Equations — Line Power Flows

] —— t t N
L 1 1 - 4
lin
e | 1 1 _ | * N
Yin T _
I I 1 T Yi(ih) Yh(ih T En
Fig.LF_2. Power flow in the line ih.
gih — Rh + ]th — Ei (El o Eh )Xih T Eiz Xi(ih) (LFQO)

Polar Sih — El- (Ez o Eh)xih T Ezzzézh)

— 0, - Jo, ~Jo, —JYin 2 —JY,i
=B (Ee " ~Ee ™ )v,e " +Eye ™ (LF.21)
— El2 v, e—jVih _ Ei Eh V., ej (Qi_eh_yih) 4+ E‘l2 yi<ih) e—j?’i

Having defined with y, the argument of the admittance y,(ih)



The Equations — Line Power Flows n

Formulation in cartesian coordinates:

ih

P = (g, + 8 (B2 + 1), (EE] + EE])+ b, (E(E] - ELE)

0, = —(bl.h +by, )(Ef + B )+ g, (EE/- EJE)+b, (EE| + EE)

Formulation in polar coordinates for the voltage and
cartesian for the admittances:

P = El.2 ( g, + &) ) —EE, ( g, c0s0, +b, sin Oih)

0, = _Ei2 (bih + bi(ih))_ Lk, (gih sin@, — b, Cosgih)



The numerical solutfion m

Since the equations that link the unknown network parameters with
those that are known are non-linear, they must be resolved by using
iterative numerical procedures (e.g., Newton-Raphson, Gauss-Seidel
methods) starting from a reasonable initial profile (for instance: all the
unknown amplitudes set equal to 1 per unit or to the value of the slack
bus, all the unknown phases set equal to the phase of the slack bus),
they are progressively updated until the convergence, according to
one of the procedures provided by the numerical analysis. The selection
of the initial profiles is generally such that, if the process converges, it
can guarantee that the convergence to one of the solutions has a
physical meaning. The most common iterative methods are based on
the description of the network in terms of the nodal admittance matrix,
although there are also different procedures.

The numerical solution of the load-flow problem is beyond the scope of
this course and we leave the students to use dedicated software
packages allowing for the solution of this fundamental power-systems
problem.



