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From the Physical Network to the 
Admittance Matrix - Introduction
An power system is essentially composed by:

q buses (or nodes), that can be distinguished in generator 
buses (corresponding to the generator terminals), reactive 
compensation buses (corresponding to the terminals of 
the synchronous compensators and the static 
compensators), interconnection buses (where more lines 
converge in order to form the «meshed» configuration) 
and load buses (which feed the equivalent loads seen 
from the High Voltage network) (see Note #1);

q capacitor banks in shunt and in series connection;
q transformers;
q reactances, in shunt and in series connection;
q lines overhead and cables that link the various buses;
q …
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From the Physical Network to the 
Admittance Matrix - Introduction

NOTE #1: on the number of the network buses

A simplification of the study can be obtained by limiting 
the connected network at the high voltage and 
considering the lower voltage parts as equivalent 
concentrated loads.
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From the Physical Network to the 
Admittance Matrix - Introduction

Hypothesis:
Ø network in permanent state of equilibrium, 
Ø network topology and parameters are constant, 
Ø constant load demands,
Ø electrical components are linear,
Ø the Network is symmetrical and balanced
In view of the above hypothesis the phase-to-ground 
voltages and currents can be derived at every point of 
the network using the direct sequence. Their frequency 
correspond to the electrical speed of the synchronous 
machines and the active and reactive powers appear 
constant at every given point of the network.
Therefore, the three-phase network can be studied 
using an equivalent one-phase network.
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From the Physical Network to the 
Admittance Matrix - Introduction

We will deal with this study using the relative values à the
represented voltages in such an one-phase equivalent
circuit are either the phase-to-ground or the phase-to-
phase ones, therefore it is useful to apply the second
ones given that the power flows in the circuit are the
three-phase powers in per unit.

Now, the load-flow problem consists in the determination
of the active and reactive power values in the various
elements of the passive network (lines and transformers)
under permanent system conditions. - Note #2 -
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NOTE #2: on the load-flow calculation

From the Physical Network to the 
Admittance Matrix - Introduction

If the network structure is known together with the 
admittances that compose it, by knowing the voltages in 
module and phase in all the network nodes, it is possible 
to calculate all the other electrical parameters of 
interest, namely the power flows and currents injected or 
extracted from the nodes as well as the network losses. 

For this reason, the ‘problem of the load-flow’ is 
practically equivalent to the determination under 
permanent conditions of the phasors representing the 
voltages in all the network nodes (state variables).
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From the Physical Network to the 
Admittance Matrix - Introduction
Why are the calculations of Load Flow performed?

q To determine daily, or sub-hour, network operating conditions that satisfy the load 
demand with respect to both (i) network security and (ii) operating costs. In 
particular, (i) the currents in the network branches should be lower than the 
maximum acceptable values in compliance with specific limits and (ii) the 
transmission losses and/or the power plants operating cost should be the 
minimum possible.

q To set the optimal technical and economical power system development 
(planning problem) in order to cope with progressively increasing loads over the 
years. The planning problem refers to both power plants and lines. It is divided as 
long or medium-term planning (5-15 years) or short-term planning(1-3 years);

q In the on-line (or quasi-real-time) monitoring, the load-flow calculation is used in 
order to be able to deploy the most appropriate control actions, not necessarily 
automatic, taking into account that measurements are acquired from various 
network points, typically every 2-10 seconds.
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From the Physical Network to the 
Admittance Matrix – The Nodal Analysis

We consider a network linear, passive and reciprocal (we assume, for 
simplicity reasons, that transformers with a complex transformation ratio 
are not present).

The network is characterized by m branches each one having a 
unique series admittance. In general, the value of such an admittance 
is considered, for simplicity, independent from the assumed voltage 
and current values (namely we neglect the inductive couplings 
between neighboring lines, the parameter variations - for example 
resistances – with the temperature and, therefore, with the ambient 
temperature and the current, etc. ).

A network like this is characterized by n+1 buses, with g generator 
buses and u load buses, where the bus n+1 is the ‘neutral’ (return 
conductor in Fig. 1).   (*)

(*) This doesn’t mean that the number of the network buses n+1 is equal to g+u+1, since, 
as it will be shortly clarified, it will be necessary to distinguish among the n+1 network 
buses an additional bus, called the ‘slack bus’.
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Two-port 
equivalent
linear and 

passive

I1 I2

V2V1

Remember that the network is supposed to be composed by 
branches (e.g. lines and transformers) being passive and 
reciprocal two-port network equivalents.
V1 = Z11I1 − Z12I2
V2 = Z21I1 − Z22I2

I1 = Y11V1 −Y12V2
−I2 = −Y21V1 +Y22V2

Z =
Z11 Z12
Z21 Z22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Impedance matrix 
in open circuit.

Y =
Y11 −Y12
−Y21 Y22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Admittance matrix 
in short circuit.

Z11 − Z12 Z22 − Z12

Z12

ZI1

V1

I1 I2

V2
Y11 −Y12 Y22 −Y12

Y12

YV1V1

I1 I2

V2

Z = Z21 − Z12
Y = Y12 −Y21

On the Two-Ports Network Equivalents 12



V1 = AV2 + BI2
I1 = CV2 + DI2

T = A B
C D

⎡

⎣
⎢

⎤

⎦
⎥

A = Z11
Z21

= Y22
Y21

B = Z11Z22 − Z12Z21
Z21

= 1
Y21

C = 1
Z21

= Y11Y22 −Y12Y21
Y21

D = Z22
Z21

= Y11
Y21

Z11 =
A
C

Z12 =
AD − BC

C

Z21 =
1
C

Z22 =
D
C

Y11 =
D
B

Y12 =
AD − BC

B

Y21 =
1
B

Y22 =
A
B

Z = − AD − BC −1
C

Y = AD − BC −1
B

(sui Doppi Bipoli) 13On the Two-Ports Network Equivalents



Symmetrical two-port 
network equivalents:

A = D
Z11 = Z22
Y11 = Y22

Two-port equivalent 
reciprocals:

AD − BC = 1
Z12 = Z21
Y12 = Y21

I1
V2 V1=0

= −I2
V1 V2=0

A −1
C

1
CV1

I1 I2

V2

D −1
C

!!
"
−

!
!
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"
−

(sui Doppi Bipoli) 14On the Two-Ports Network Equivalents
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Fig. 1. Representation of the generic node 𝑖 and its connections.

From the Physical Network to the 
Admittance Matrix – The Nodal Analysis



16From the Physical Network to the 
Admittance Matrix – The Nodal Analysis
The problem that we would solve now (nodal analysis) is to find which are 
the relations between the node voltages and injected currents, 
considering the first as independent variables and the second as 
dependent variables.

For a generic network node i-th, the node voltage is indicated with Ei and 
with Ii the node-injected current (this last is the current delivered by a 
generator or absorbed by a load connected to the node). By 
convention, a current that is injected by a generator (into network) is 
considered with positive sign and a current absorbed by a load is 
considered with negative sign. If a node has only the interconnection 
function (i.e. it does not have generators or loads connected to it), the 
corresponding injected current is, obviously, null. If more generators and 
loads are connected to a node, the node current is the algebraic sum of 
the corresponding complex currents. We indicate with Iij the current of 
the branch that connects the nodes i and j. The complex admittance 
between node i and node j is indicated with yij, whereas, with yi0 we 
indicate the sum of the admittances existing between the node i and the 
neutral.



17From the Physical Network to the 
Admittance Matrix – The Nodal Analysis

With reference to the network represented in Fig. 1, the currents 
exiting from the node are:

Iio = yioEi

Ii1 = yi1(Ei − E1 )
. . . . . . . . . . .
Iin = yin (Ei − En )

⎧

⎨

⎪
⎪

⎩

⎪
⎪

Applying the first Kirchhoff law, we obtain:

Ii = yioEi + yi1(Ei − E1 )+ ...+ yin (Ei − En ) =
  = (yio + yi1 + ...+ yin )Ei − yi1E1 − ...− yinEn =

  =(yio + yi1 + ...+ yin )Ei − yihEh
h=1
h≠i

n

∑
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By setting Yii = yio + yi1 + ...+ yin = yih
h=0

n

∑

Yi1 = −yi1
. . . . . .
Yin = −yin

Ii = Yi1E1 +Yi 2E2 + ...+YiiEi + ...+YinEn = YihEh
h=1

n

∑

we obtain

From the Physical Network to the 
Admittance Matrix – The Nodal Analysis



19From the Physical Network to the 
Admittance Matrix – The Nodal Analysis

A similar equation can be written for all other nodes à

for the whole network
we can derive 
the following system:

I1 = Y11E1 + ...+Y1hEh + ...+Y1nEn

. . . . . . . . . . . . . . . . . . .
Ih = Yh1E1 + ...+YhhEh + ...+YhnEn

. . . . . . . . . . . . . . . . . . .
In = Yn1E1 + ...+YnhEh + ...+YnnEn

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

in matrix 
formulation

I1
...
Ih
...
In

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

Y11 ... Y1h ... Y1n
... ... ... ... ...
Yh1 ... Yhh ... Yhh
... ... ... ... ...
Yn1 ... Ynh ... Ynn

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⋅

E1
...
Eh

...
En

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⇒ I⎡⎣ ⎤⎦ = Y⎡⎣ ⎤⎦ E⎡⎣ ⎤⎦

is the so-called network admittance matrixY[ ]



20From the Physical Network to the 
Admittance Matrix – The Nodal Analysis

Ø a generic element       out of the main diagonal, called trans-
admittance, is equal to the opposite of the admittance       of the 
branch that connects the nodes i and j:

Yij yij

Yij = −yij = Ii Ej=1

Eh=0 ∀h≠ j

Ø a generic element       of the main diagonal, called self-
admittance,  is equal to the sum of all the admittances of the 
branches that are connected to node i including the ones with 
the neutral:

Yii

Yii = yio + yij∑ = Ii Ei=1

Ej=0 ∀j≠i

where the summation is extended to all of the nodes connected to 
node i.

Properties of the nodal admittance matrix elements.



21From the Physical Network to the 
Admittance Matrix – The Nodal Analysis

Matrix    is sparse. Furthermore, it is diagonal-dominant because 
each of its diagonal elements, in absolute value, is not lower than 
the sum of the other elements in the same row.

Matrix      is also symmetric if all the double bipolars that compose 
the network are reciprocal.

Y[ ]

Y[ ]
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50 km

100 km100 km

1 2

3

Lines rated voltage: 220kV

r = 0,0717 Ω/km
x = 0,424 Ω/km
b = 2,64 μS/km
g = 0

We assume as power base 100 MW 
and base voltage 220 kV

rpu=r*100/220^2
xpu=x*100/220^2
bpu=b*220^2/100

y12=1/((rpu+i*xpu)*50)
y13=1/((rpu+i*xpu)*100)
y23=1/((rpu+i*xpu)*100)
y10=1/2*(bpu*50+bpu*100)
y20=1/2*(bpu*50+bpu*100)
y30=1/2*(bpu*100+bpu*100)

Y11=y12+y13+y10 Y12=-y12  Y13=-y13
5,63 – j 33,2  -3,75 + j 22,2  -1,88 + j 11,1

  Y22=y12+y23+y20 Y23=-y23
   5,63 – j 33,2  -1,88 + j 11,1

    Y33=y13+y23+y30
    3,75 – j 22,1

Example
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I⎡⎣ ⎤⎦ = Y⎡⎣ ⎤⎦ E⎡⎣ ⎤⎦

The Equations - Introduction
In a network with n nodes, the n complex voltages and the 
n complex node currents are linked by n equations with

complex variables and coefficients representing the internal network 
constraints. 

The 2n complex voltages and currents are equivalent to 4n real variables. On 
the other hand, we have 2n linear equations with real variables and 
coefficients, which are obtained by separating the real and imaginary parts (or 
the modules and the arguments).
Therefore, from the 4n real variables, 2n can be fixed arbitrarily and the 
remaining 2n are calculated by solving the system of equations of the network.
When the system is solved, and therefore all voltages and currents are known, 
we can calculate (see Note #2):
- P and Q inserted or extracted from the nodes
- branches powers/currents
- network losses (both active and reactive, corresponding to the balance 

between powers inserted and extracted from the nodes). 
If the network operation conditions could be represented imposing as external 
constraints only voltage and current amplitudes and phases, the power flows 
can be calculated by solving a simple system of linear equations.



In practice, the operating conditions imposed on the networks 
(external constraints) are expressed by fixing other parameters. This 
implies, as will be explained shortly, that the system of equations to be 
solved becomes non-linear. In particular:
In the load buses P and Q demands are normally fixed (Pi* and Qi*).
In practice, it is not appropriate to represent the various user devices 
with constant admittances (i.e., asynchronous motors absorb active 
power almost independently of the voltage, with variations in the 
range of +10%; gas-discharge lamps and incandescent lamps, even if 
they absorb power that varies with the voltage, do not follow the 
quadratic law).

The dependence on the voltage is expressed by 
the general relations shown at the right, where 
the value of the exponential coefficients depend
to the  nature of the load and, in some cases, it can 
also be set = 0.

25The Equations - Introduction

P = P0
V
V0

⎛
⎝⎜

⎞
⎠⎟

α p

Q =Q0
V
V0

⎛
⎝⎜

⎞
⎠⎟

αq



26The Equations - Introduction

For the generator buses, it is convenient to fix the P that is injected from them 
to the grid (Pi*) and the amplitude of voltage E (Ei*).
Ø We choose the value equal to the P that each power plant is called to 

provide in accordance with the plan of the global network load distribution 
among the production installations.

Ø Fixing the E, rather than the Q, is convenient for the following reasons:
1. fixing the voltage (typically at a value between En and 1.1En according 

to the location of the power plants and the distance with respect to 
the loads), means that we set the voltage in the network key points 
(often scattered throughout the network). So the solution of the 
equations provides a solution acceptable for the network operation. It 
is also facilitated the convergence of the iterative procedure for the 
solution of the equations (which is not discussed here).

2. The Q of the generators can vary between the Max-limit (i.e., 
generators over excitation) and the Min-limit (i.e., generators under 
excitation) by simply by varying the excitation current. Therefore, it is 
convenient to accept to operate each power plant with the Q that is 
provided by the calculation and which allows to obtain the 
predetermined voltages.



27The Equations - Introduction

We have justified that both for loads and generators, it is convenient to fix the 
P.
It should be noted, however, that it is not possible to assign arbitrary valuesof P 
at all nodes because this would be equal to arbitrarily setting the network 
losses, which is clearly absurd. In fact, the losses are not known initially, but are 
calculated together with the power flows, after having solved the equations.
It is therefore allowable to arbitrarily set no more than (n-1) active powers.

Consequently, for one of the nodes, that can be chosen to coincide in the 
numbering with the n-th node, the amplitude and the phase of the voltage are 
fixed. This node is called slack bus, as the active power, for this node, is equal 
to the balance between the active powers of generators/loads and the 
power losses.
As slack bus we can choose a generator where a significant power is installed. 
In this node the phase of the voltage is fixed to zero; this is equivalent to 
measuring the phases of the other (n-1) node voltages using as a reference the 
slack bus voltage phasor.



28The Equations - Introduction

Summary of the parameters that are imposed and the ones that 
need to be determined for the various types of buses

Type of bus Imposed parameters  
(in total 2n) 

Parameters to be 
determined (in total 2n) 

Generator buses Pg Eg Qg arg (Eg) 

Load buses Pc Qc Ec arg (Ec) 

Slack bus En arg (En) =0 Pn Qn 
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30The Equations - Cartesian Coordinates 
Formulation

We will use the following notations:
   voltage of the i-th node;

   voltage of the h-th node;

   ih element of the admittance matrix         ;

The complex power injected, or absorbed, from the i-th node can be 
written as:

       

replacing the expression that gives the complex current inserted or 
extracted from the node i we get:

Y[ ]

Ei = Ei
' + jEi

''

Eh = Eh
' + jEh

''

Yih = Gih + jBih

Si = Pi + jQi = Ei I i

Si = Ei Y ih Eh
h=1

n

∑ = Ei
' + jEi

''( ) Gih − jBih( )
h=1

n

∑ Eh
' + jEh

''( )



31The Equations - Cartesian Coordinates 
Formulation

Then, the injected active and reactive powers of the i-th node will be:

Pi = ′Ei Gih ′Eh − Bih ′′Eh( ) + ′′Ei Bih ′Eh +Gih ′′Eh( )
h=1

n

∑
h=1

n

∑

Qi = − ′Ei Bih ′Eh +Gih ′′Eh( ) + ′′Ei Gih ′Eh − Bih ′′Eh( )
h=1

n

∑
h=1

n

∑

⎧

⎨
⎪⎪

⎩
⎪
⎪

      

The module (the square) of the voltage at the i-th node will also be:

Ei
2 = Ei

'2 + Ei
''2



32The Equations - Cartesian Coordinates
Formulation

The entire system of equations in cartesian coordinates assumes the
following form:

0 = Ei
''                                                                 

Ei
*2 = Ei

'2 + Ei
''2                                                      

                                                                         

Pi
* = Ei

' GihEh
' − BihEh

''( )
h=1

n

∑ + Ei
'' BihEh

' +GihEh
''( )

h=1

n

∑   

        

Qi
* = −Ei

' BihEh
' +GihEh

''( )
h=1

n

∑ + Ei
'' GihEh

' − BihEh
''( )

h=1

n

∑     

The number of equations is: 1+(g+1)+(g+u)+u=2(g+u+1)=2n.

i=n for the unique slack bus
i=1,2,...,g and i=n, for the g
generator buses + the slack bus

i=1,2,...,g+u, for the g generator
buses + u load buses

i=g+1,..., g+u for the load buses



Outline
From the physical network to the admittance 
matrix
§ Introduction
§ Network nodal analysis

The equations
§ Introduction

§ Cartesian coordinates formulation
§ Polar coordinates formulation
§ Line power flows



34The Equations – Polar Coordinates
Formulation

By indicating with φi, θi respectively the arguments of the current and voltage
of node i and with γih the argument of the admittance we can write Yih

Ei = Eie
jθi

Ii = Iie
jφi

Yih = Yihe
jγ ih

.

voltage at the i-th node;

current at the i-th node;

element ih of the admittance matrix ;

The complex power at the i-th node can be written as:

Si = Pi + jQi = Ei I i
Using again the network admittance matrix to express the injected node 
current, we obtain:

Si = Ei Y ih Eh
h=1

n

∑ = EiY ih Eh
h=1

n

∑ = EiEhYihe
j θi−θh−γ ih( )

h=1

n

∑

Y[ ]



35The Equations – Polar Coordinates
Formulation

Then, the active and reactive powers at the i-th node will be:

Pi = EiEhYih cos θ i −θh −γ ih( )
h=1

n

∑

Qi = EiEhYih sin θ i −θh −γ ih( )
h=1

n

∑

⎧

⎨
⎪⎪

⎩
⎪
⎪

( )18LF!



36The Equations – Polar Coordinates
Formulation

The system of equations for the solution of the load flow problem in
polar coordinates assumes therefore the following form:

0 = θ i                                                                 
Ei

* = Ei                                                      
                                                                         

Pi
* = Ei Eh

h=1

n

∑ Yih cos θ ih −γ ih( ) 
        

Qi
* = Ei Eh

h=1

n

∑ Yih sin θ ih −γ ih( ) 

The number of equations is: 1+(g+1)+(g+u)+u=2n.

i=n for the unique slack bus
i=1,2,...,g and i=n, for the g
generator buses + the slack bus

i=1,2,...,g+u, for the g generator
buses + the u load buses

i=g+1,..., g+u, for the load buses



37The Equations – Polar Coordinates
Formulation

In this case, the first g+2 equations (generator buses and slack bus) 
are the positions, which can be replaced directly in the other 
equations of the system, so the number of equations needed in the 
formulation in polar coordinates (g+2u) is lower than the one in 
Cartesian coordinates. This is due to the fact that the modules of the 
voltages at the generator and the phase of the voltage of the slack 
bus, are already acquired as imposed parameters.

This does not necessarily imply a reduction of the computation time. 
In fact, using polar coordinates, it is necessary to calculate 
trigonometric functions sin and cos.



38The Equations – Polar Coordinates
Formulation

Formulation in polar coordinates for the voltage and cartesian for the
admittances:

0 = θn
''                                                                 

Ei
* = Ei                                                      

                                                                         

Pi
* = Ei Eh

h=1

n

∑ Gih cosθ ih + Bih sinθ ih( ) 
        

Qi
* = Ei Eh

h=1

n

∑ Gih sinθ ih − Bih cosθ ih( ) 

i=n for the unique slack bus
i=1,2,...,g and i=n, for the g
generator buses + the slack bus

i=1,2,...,g+u, for the g generator
buses + the u load buses

i=g+1,..., g+u, for the load buses
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40The Equations – Line Power Flows

1

2

n

h

i

I

I

E
E

yih

ih

i
hyi(ih) yh(ih)'

iI

Fig.LF_2. Power flow in the line ih.

Sih = Pih + jQih = Ei Ei − Eh( )y
ih
+ Ei

2 y
i ( ih )

  

Sih = Ei Ei − Eh( ) y
ih
+ Ei

2 y
iih( )

= Eie
jθi Eie

− jθi − Ehe
− jθh( ) yihe

− jγ ih + Ei
2 yi ih( )e

− jγ i

= Ei
2 yihe

− jγ ih − Ei Eh yihe
j θi−θh−γ ih( ) + Ei

2 yi ih( )e
− jγ i

Polar

( )20LF!

( )21LF!

Having defined with γi the argument of the admittance yi(ih)



41The Equations – Line Power Flows

Formulation in cartesian coordinates:

  

Pih = gih + gi ih( )( ) ′Ei
2 + ′′Eh

2( )− gih ′Ei ′Eh + ′′Ei ′′Eh( ) + bih ′Ei ′′Eh − ′Eh ′′Ei( )
Qih = − bih + bi ih( )( ) ′Ei

2 + ′′Eh
2( ) + gih ′Ei ′′Eh − ′Eh ′′Ei( ) + bih ′Ei ′Eh + ′′Ei ′′Eh( )

Formulation in polar coordinates for the voltage and
cartesian for the admittances:

  
Pih = Ei

2 gih + gi ih( )( )− Ei Eh gih cosθ ih + bih sinθ ih( )

  
Qih = −Ei

2 bih + bi ih( )( )− Ei Eh gih sinθ ih − bih cosθ ih( )



42The numerical solution

Since the equations that link the unknown network parameters with 
those that are known are non-linear, they must be resolved by using 
iterative numerical procedures (e.g., Newton-Raphson, Gauss-Seidel 
methods) starting from a reasonable initial profile (for instance: all the 
unknown amplitudes set equal to 1 per unit or to the value of the slack 
bus, all the unknown phases set equal to the phase of the slack bus), 
they are progressively updated until the convergence, according to 
one of the procedures provided by the numerical analysis. The selection 
of the initial profiles is generally such that, if the process converges, it 
can guarantee that the convergence to one of the solutions has a 
physical meaning. The most common iterative methods are based on 
the description of the network in terms of the nodal admittance matrix, 
although there are also different procedures.

The numerical solution of the load-flow problem is beyond the scope of 
this course and we leave the students to use dedicated software 
packages allowing for the solution of this fundamental power-systems 
problem.


